#!/usr/bin/env python3 ## ## Copyright(c) 2022-2023 Qualcomm Innovation Center, Inc. All Rights Reserved. ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## import sys import re import string import hex_common ## ## Helpers for gen_analyze_func ## def is_predicated(tag): return "A_CONDEXEC" in hex_common.attribdict[tag] def analyze_opn_old(f, tag, regtype, regid, regno): regN = f"{regtype}{regid}N" predicated = "true" if is_predicated(tag) else "false" if regtype == "R": if regid in {"ss", "tt"}: f.write(f" const int {regN} = insn->regno[{regno}];\n") f.write(f" ctx_log_reg_read_pair(ctx, {regN});\n") elif regid in {"dd", "ee", "xx", "yy"}: f.write(f" const int {regN} = insn->regno[{regno}];\n") f.write(f" ctx_log_reg_write_pair(ctx, {regN}, {predicated});\n") elif regid in {"s", "t", "u", "v"}: f.write(f" const int {regN} = insn->regno[{regno}];\n") f.write(f" ctx_log_reg_read(ctx, {regN});\n") elif regid in {"d", "e", "x", "y"}: f.write(f" const int {regN} = insn->regno[{regno}];\n") f.write(f" ctx_log_reg_write(ctx, {regN}, {predicated});\n") else: hex_common.bad_register(regtype, regid) elif regtype == "P": if regid in {"s", "t", "u", "v"}: f.write(f" const int {regN} = insn->regno[{regno}];\n") f.write(f" ctx_log_pred_read(ctx, {regN});\n") elif regid in {"d", "e", "x"}: f.write(f" const int {regN} = insn->regno[{regno}];\n") f.write(f" ctx_log_pred_write(ctx, {regN});\n") else: hex_common.bad_register(regtype, regid) elif regtype == "C": if regid == "ss": f.write( f" const int {regN} = insn->regno[{regno}] " "+ HEX_REG_SA0;\n" ) f.write(f" ctx_log_reg_read_pair(ctx, {regN});\n") elif regid == "dd": f.write(f" const int {regN} = insn->regno[{regno}] " "+ HEX_REG_SA0;\n") f.write(f" ctx_log_reg_write_pair(ctx, {regN}, {predicated});\n") elif regid == "s": f.write( f" const int {regN} = insn->regno[{regno}] " "+ HEX_REG_SA0;\n" ) f.write(f" ctx_log_reg_read(ctx, {regN});\n") elif regid == "d": f.write(f" const int {regN} = insn->regno[{regno}] " "+ HEX_REG_SA0;\n") f.write(f" ctx_log_reg_write(ctx, {regN}, {predicated});\n") else: hex_common.bad_register(regtype, regid) elif regtype == "M": if regid == "u": f.write(f" const int {regN} = insn->regno[{regno}];\n") f.write(f" ctx_log_reg_read(ctx, {regN});\n") else: hex_common.bad_register(regtype, regid) elif regtype == "V": newv = "EXT_DFL" if hex_common.is_new_result(tag): newv = "EXT_NEW" elif hex_common.is_tmp_result(tag): newv = "EXT_TMP" if regid in {"dd", "xx"}: f.write(f" const int {regN} = insn->regno[{regno}];\n") f.write( f" ctx_log_vreg_write_pair(ctx, {regN}, {newv}, " f"{predicated});\n" ) elif regid in {"uu", "vv"}: f.write(f" const int {regN} = insn->regno[{regno}];\n") f.write(f" ctx_log_vreg_read_pair(ctx, {regN});\n") elif regid in {"s", "u", "v", "w"}: f.write(f" const int {regN} = insn->regno[{regno}];\n") f.write(f" ctx_log_vreg_read(ctx, {regN});\n") elif regid in {"d", "x", "y"}: f.write(f" const int {regN} = insn->regno[{regno}];\n") f.write(f" ctx_log_vreg_write(ctx, {regN}, {newv}, " f"{predicated});\n") else: hex_common.bad_register(regtype, regid) elif regtype == "Q": if regid in {"d", "e", "x"}: f.write(f" const int {regN} = insn->regno[{regno}];\n") f.write(f" ctx_log_qreg_write(ctx, {regN});\n") elif regid in {"s", "t", "u", "v"}: f.write(f" const int {regN} = insn->regno[{regno}];\n") f.write(f" ctx_log_qreg_read(ctx, {regN});\n") else: hex_common.bad_register(regtype, regid) elif regtype == "G": if regid in {"dd"}: f.write(f"// const int {regN} = insn->regno[{regno}];\n") elif regid in {"d"}: f.write(f"// const int {regN} = insn->regno[{regno}];\n") elif regid in {"ss"}: f.write(f"// const int {regN} = insn->regno[{regno}];\n") elif regid in {"s"}: f.write(f"// const int {regN} = insn->regno[{regno}];\n") else: hex_common.bad_register(regtype, regid) elif regtype == "S": if regid in {"dd"}: f.write(f"// const int {regN} = insn->regno[{regno}];\n") elif regid in {"d"}: f.write(f"// const int {regN} = insn->regno[{regno}];\n") elif regid in {"ss"}: f.write(f"// const int {regN} = insn->regno[{regno}];\n") elif regid in {"s"}: f.write(f"// const int {regN} = insn->regno[{regno}];\n") else: hex_common.bad_register(regtype, regid) else: hex_common.bad_register(regtype, regid) def analyze_opn_new(f, tag, regtype, regid, regno): regN = f"{regtype}{regid}N" if regtype == "N": if regid in {"s", "t"}: f.write(f" const int {regN} = insn->regno[{regno}];\n") f.write(f" ctx_log_reg_read(ctx, {regN});\n") else: hex_common.bad_register(regtype, regid) elif regtype == "P": if regid in {"t", "u", "v"}: f.write(f" const int {regN} = insn->regno[{regno}];\n") f.write(f" ctx_log_pred_read(ctx, {regN});\n") else: hex_common.bad_register(regtype, regid) elif regtype == "O": if regid == "s": f.write(f" const int {regN} = insn->regno[{regno}];\n") f.write(f" ctx_log_vreg_read(ctx, {regN});\n") else: hex_common.bad_register(regtype, regid) else: hex_common.bad_register(regtype, regid) def analyze_opn(f, tag, regtype, regid, i): if hex_common.is_pair(regid): analyze_opn_old(f, tag, regtype, regid, i) elif hex_common.is_single(regid): if hex_common.is_old_val(regtype, regid, tag): analyze_opn_old(f, tag, regtype, regid, i) elif hex_common.is_new_val(regtype, regid, tag): analyze_opn_new(f, tag, regtype, regid, i) else: hex_common.bad_register(regtype, regid) else: hex_common.bad_register(regtype, regid) ## ## Generate the code to analyze the instruction ## For A2_add: Rd32=add(Rs32,Rt32), { RdV=RsV+RtV;} ## We produce: ## static void analyze_A2_add(DisasContext *ctx) ## { ## Insn *insn G_GNUC_UNUSED = ctx->insn; ## const int RdN = insn->regno[0]; ## ctx_log_reg_write(ctx, RdN, false); ## const int RsN = insn->regno[1]; ## ctx_log_reg_read(ctx, RsN); ## const int RtN = insn->regno[2]; ## ctx_log_reg_read(ctx, RtN); ## } ## def gen_analyze_func(f, tag, regs, imms): f.write(f"static void analyze_{tag}(DisasContext *ctx)\n") f.write("{\n") f.write(" Insn *insn G_GNUC_UNUSED = ctx->insn;\n") i = 0 ## Analyze all the registers for regtype, regid in regs: analyze_opn(f, tag, regtype, regid, i) i += 1 has_generated_helper = not hex_common.skip_qemu_helper( tag ) and not hex_common.is_idef_parser_enabled(tag) ## Mark HVX instructions with generated helpers if (has_generated_helper and "A_CVI" in hex_common.attribdict[tag]): f.write(" ctx->has_hvx_helper = true;\n") f.write("}\n\n") def main(): hex_common.read_semantics_file(sys.argv[1]) hex_common.read_attribs_file(sys.argv[2]) hex_common.read_overrides_file(sys.argv[3]) hex_common.read_overrides_file(sys.argv[4]) ## Whether or not idef-parser is enabled is ## determined by the number of arguments to ## this script: ## ## 5 args. -> not enabled, ## 6 args. -> idef-parser enabled. ## ## The 6:th arg. then holds a list of the successfully ## parsed instructions. is_idef_parser_enabled = len(sys.argv) > 6 if is_idef_parser_enabled: hex_common.read_idef_parser_enabled_file(sys.argv[5]) hex_common.calculate_attribs() tagregs = hex_common.get_tagregs() tagimms = hex_common.get_tagimms() with open(sys.argv[-1], "w") as f: f.write("#ifndef HEXAGON_TCG_FUNCS_H\n") f.write("#define HEXAGON_TCG_FUNCS_H\n\n") for tag in hex_common.tags: gen_analyze_func(f, tag, tagregs[tag], tagimms[tag]) f.write("#endif /* HEXAGON_TCG_FUNCS_H */\n") if __name__ == "__main__": main()