/* * QEMU interrupt controller & timer emulation * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "vl.h" #define PHYS_JJ_CLOCK 0x71D00000 #define PHYS_JJ_CLOCK1 0x71D10000 #define PHYS_JJ_INTR0 0x71E00000 /* CPU0 interrupt control registers */ #define PHYS_JJ_INTR_G 0x71E10000 /* Master interrupt control registers */ /* These registers are used for sending/receiving irqs from/to * different cpu's. */ struct sun4m_intreg_percpu { unsigned int tbt; /* Intrs pending for this cpu, by PIL. */ /* These next two registers are WRITE-ONLY and are only * "on bit" sensitive, "off bits" written have NO affect. */ unsigned int clear; /* Clear this cpus irqs here. */ unsigned int set; /* Set this cpus irqs here. */ }; /* * djhr * Actually the clear and set fields in this struct are misleading.. * according to the SLAVIO manual (and the same applies for the SEC) * the clear field clears bits in the mask which will ENABLE that IRQ * the set field sets bits in the mask to DISABLE the IRQ. * * Also the undirected_xx address in the SLAVIO is defined as * RESERVED and write only.. * * DAVEM_NOTE: The SLAVIO only specifies behavior on uniprocessor * sun4m machines, for MP the layout makes more sense. */ struct sun4m_intreg_master { unsigned int tbt; /* IRQ's that are pending, see sun4m masks. */ unsigned int irqs; /* Master IRQ bits. */ /* Again, like the above, two these registers are WRITE-ONLY. */ unsigned int clear; /* Clear master IRQ's by setting bits here. */ unsigned int set; /* Set master IRQ's by setting bits here. */ /* This register is both READ and WRITE. */ unsigned int undirected_target; /* Which cpu gets undirected irqs. */ }; /* * Registers of hardware timer in sun4m. */ struct sun4m_timer_percpu { volatile unsigned int l14_timer_limit; /* Initial value is 0x009c4000 */ volatile unsigned int l14_cur_count; }; struct sun4m_timer_global { volatile unsigned int l10_timer_limit; volatile unsigned int l10_cur_count; }; #define SUN4M_INT_ENABLE 0x80000000 #define SUN4M_INT_E14 0x00000080 #define SUN4M_INT_E10 0x00080000 #define SUN4M_HARD_INT(x) (0x000000001 << (x)) #define SUN4M_SOFT_INT(x) (0x000010000 << (x)) #define SUN4M_INT_MASKALL 0x80000000 /* mask all interrupts */ #define SUN4M_INT_MODULE_ERR 0x40000000 /* module error */ #define SUN4M_INT_M2S_WRITE 0x20000000 /* write buffer error */ #define SUN4M_INT_ECC 0x10000000 /* ecc memory error */ #define SUN4M_INT_FLOPPY 0x00400000 /* floppy disk */ #define SUN4M_INT_MODULE 0x00200000 /* module interrupt */ #define SUN4M_INT_VIDEO 0x00100000 /* onboard video */ #define SUN4M_INT_REALTIME 0x00080000 /* system timer */ #define SUN4M_INT_SCSI 0x00040000 /* onboard scsi */ #define SUN4M_INT_AUDIO 0x00020000 /* audio/isdn */ #define SUN4M_INT_ETHERNET 0x00010000 /* onboard ethernet */ #define SUN4M_INT_SERIAL 0x00008000 /* serial ports */ #define SUN4M_INT_SBUSBITS 0x00003F80 /* sbus int bits */ #define SUN4M_INT_SBUS(x) (1 << (x+7)) #define SUN4M_INT_VME(x) (1 << (x)) typedef struct SCHEDState { uint32_t intreg_pending; uint32_t intreg_enabled; uint32_t intregm_pending; uint32_t intregm_enabled; uint32_t timer_regs[2]; uint32_t timerm_regs[2]; } SCHEDState; static SCHEDState *ps; static int intreg_io_memory, intregm_io_memory, timer_io_memory, timerm_io_memory; static void sched_reset(SCHEDState *s) { } static uint32_t intreg_mem_readl(void *opaque, target_phys_addr_t addr) { SCHEDState *s = opaque; uint32_t saddr; saddr = (addr - PHYS_JJ_INTR0) >> 2; switch (saddr) { case 0: return s->intreg_pending; break; default: break; } return 0; } static void intreg_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) { SCHEDState *s = opaque; uint32_t saddr; saddr = (addr - PHYS_JJ_INTR0) >> 2; switch (saddr) { case 0: s->intreg_pending = val; break; case 1: // clear s->intreg_enabled &= ~val; break; case 2: // set s->intreg_enabled |= val; break; default: break; } } static CPUReadMemoryFunc *intreg_mem_read[3] = { intreg_mem_readl, intreg_mem_readl, intreg_mem_readl, }; static CPUWriteMemoryFunc *intreg_mem_write[3] = { intreg_mem_writel, intreg_mem_writel, intreg_mem_writel, }; static uint32_t intregm_mem_readl(void *opaque, target_phys_addr_t addr) { SCHEDState *s = opaque; uint32_t saddr; saddr = (addr - PHYS_JJ_INTR_G) >> 2; switch (saddr) { case 0: return s->intregm_pending; break; case 1: return s->intregm_enabled; break; default: break; } return 0; } static void intregm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) { SCHEDState *s = opaque; uint32_t saddr; saddr = (addr - PHYS_JJ_INTR_G) >> 2; switch (saddr) { case 0: s->intregm_pending = val; break; case 1: s->intregm_enabled = val; break; case 2: // clear s->intregm_enabled &= ~val; break; case 3: // set s->intregm_enabled |= val; break; default: break; } } static CPUReadMemoryFunc *intregm_mem_read[3] = { intregm_mem_readl, intregm_mem_readl, intregm_mem_readl, }; static CPUWriteMemoryFunc *intregm_mem_write[3] = { intregm_mem_writel, intregm_mem_writel, intregm_mem_writel, }; static uint32_t timer_mem_readl(void *opaque, target_phys_addr_t addr) { SCHEDState *s = opaque; uint32_t saddr; saddr = (addr - PHYS_JJ_CLOCK) >> 2; switch (saddr) { default: return s->timer_regs[saddr]; break; } return 0; } static void timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) { SCHEDState *s = opaque; uint32_t saddr; saddr = (addr - PHYS_JJ_CLOCK) >> 2; switch (saddr) { default: s->timer_regs[saddr] = val; break; } } static CPUReadMemoryFunc *timer_mem_read[3] = { timer_mem_readl, timer_mem_readl, timer_mem_readl, }; static CPUWriteMemoryFunc *timer_mem_write[3] = { timer_mem_writel, timer_mem_writel, timer_mem_writel, }; static uint32_t timerm_mem_readl(void *opaque, target_phys_addr_t addr) { SCHEDState *s = opaque; uint32_t saddr; saddr = (addr - PHYS_JJ_CLOCK1) >> 2; switch (saddr) { default: return s->timerm_regs[saddr]; break; } return 0; } static void timerm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) { SCHEDState *s = opaque; uint32_t saddr; saddr = (addr - PHYS_JJ_CLOCK1) >> 2; switch (saddr) { default: s->timerm_regs[saddr] = val; break; } } static CPUReadMemoryFunc *timerm_mem_read[3] = { timerm_mem_readl, timerm_mem_readl, timerm_mem_readl, }; static CPUWriteMemoryFunc *timerm_mem_write[3] = { timerm_mem_writel, timerm_mem_writel, timerm_mem_writel, }; void pic_info() {} void irq_info() {} static const unsigned int intr_to_mask[16] = { 0, 0, 0, 0, 0, 0, SUN4M_INT_ETHERNET, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; void pic_set_irq(int irq, int level) { if (irq < 16) { unsigned int mask = intr_to_mask[irq]; ps->intreg_pending |= 1 << irq; if (ps->intregm_enabled & mask) { cpu_single_env->interrupt_index = irq; cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD); } } } void sched_init() { SCHEDState *s; s = qemu_mallocz(sizeof(SCHEDState)); if (!s) return; intreg_io_memory = cpu_register_io_memory(0, intreg_mem_read, intreg_mem_write, s); cpu_register_physical_memory(PHYS_JJ_INTR0, 3, intreg_io_memory); intregm_io_memory = cpu_register_io_memory(0, intregm_mem_read, intregm_mem_write, s); cpu_register_physical_memory(PHYS_JJ_INTR_G, 5, intregm_io_memory); timer_io_memory = cpu_register_io_memory(0, timer_mem_read, timer_mem_write, s); cpu_register_physical_memory(PHYS_JJ_CLOCK, 2, timer_io_memory); timerm_io_memory = cpu_register_io_memory(0, timerm_mem_read, timerm_mem_write, s); cpu_register_physical_memory(PHYS_JJ_CLOCK1, 2, timerm_io_memory); sched_reset(s); ps = s; }